
Distributed Classification in Peer-to-Peer Networks

Ping Luo
Chinese Academy of

Sciences
luop@ics.ict.ac.cn

Hui Xiong
Rutgers University

hui@rbs.rutgers.edu

Kevin Lü
Brunel University

kevin.lu@brunel.ac.uk

Zhongzhi Shi
Chinese Academy of

Sciences
shizz@ics.ict.ac.cn

ABSTRACT
This work studies the problem of distributed classification
in peer-to-peer (P2P) networks. While there has been a
significant amount of work in distributed classification, most
of existing algorithms are not designed for P2P networks.
Indeed, as server-less and router-less systems, P2P networks
impose several challenges for distributed classification: (1)
it is not practical to have global synchronization in large-
scale P2P networks; (2) there are frequent topology changes
caused by frequent failure and recovery of peers; and (3)
there are frequent on-the-fly data updates on each peer.

In this paper, we propose an ensemble paradigm for dis-
tributed classification in P2P networks. Under this paradigm,
each peer builds its local classifiers on the local data and the
results from all local classifiers are then combined by plural-
ity voting. To build local classifiers, we adopt the learning
algorithm of pasting bites to generate multiple local classi-
fiers on each peer based on the local data. To combine local
results, we propose a general form of Distributed Plurality
Voting (DPV) protocol in dynamic P2P networks. This
protocol keeps the single-site validity for dynamic networks,
and supports the computing modes of both one-shot query
and continuous monitoring. We theoretically prove that the
condition C0 for sending messages used in DPV0 is locally
communication-optimal to achieve the above properties. Fi-
nally, experimental results on real-world P2P networks show
that: (1) the proposed ensemble paradigm is effective even
if there are thousands of local classifiers; (2) in most cases,
the DPV0 algorithm is local in the sense that voting is pro-
cessed using information gathered from a very small vicinity,
whose size is independent of the network size; (3) DPV0 is
significantly more communication-efficient than existing al-
gorithms for distributed plurality voting.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications–
Data Mining; C.2.4 [Computer-communication Networks]:
Distributed Systems—Distributed applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’07, August 12–15, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-609-7/07/0008 ...$5.00.

General Terms
Algorithms, Experimentation

Keywords
Distributed classification, P2P networks, Distributed plural-
ity voting

1. INTRODUCTION
Peer-to-peer (P2P) networks [9] are an emerging technol-

ogy for sharing content files containing audio, video, and
realtime data, such as telephony traffic. A P2P network
relies primarily on the computing power and bandwidth of
the participants in the network and is typically used for
connecting nodes via largely ad hoc connections. Detection
and classification of objects moving in P2P networks is an
important task in many applications.

Motivating Examples. In a P2P anti-spam network,
millions of users form a community and spam emails are
defined by a consensus, particularly in a collaborative en-
deavor. Essentially, the P2P network allows users to share
their anti-spam experiences without exposing their email
content. Another example is to automatically organize Web
documents in a P2P environment [21]. Initially, the focused
crawler on each peer starts to gather the Web pages, which
are related to the user-specified topic taxonomy. Based on
the training data, a local predictive model can be derived,
which allows the system to automatically classify these Web
pages into specific topics. Once we link together a large
number of users with shared topics of interest in P2P net-
works, it is natural to aggregate their knowledge to construct
a global classifer that can be used by all members.

However, P2P networks are highly decentralized, dynamic
and normally includes thousands of nodes. Also, P2P net-
work usually does not have routers and the notion of clients
or servers. This imposes several challenges for distributed
classification in P2P networks. First, it is not practical
to have global synchronization in large-scale P2P networks.
Also, there are frequent topology changes caused by frequent
failure and recovery of peers. Finally, there are frequent on-
the-fly data updates on each peer.

To meet the above challenges, in this paper, we propose
to build an ensemble classifier for distributed classification
in P2P networks by plurality voting on all the local classi-
fiers, which are generated on the local data. To this end,
we first adapt the training paradigm of pasting bites [6, 8]
for building local classifiers. Since data are not uniformly
distributed on each node, the number of local classifiers re-

quired to generate can be different for different local regions.
As a result, we provide a modified version of pasting bites
to meet this requirement in P2P networks.

Next, to combine the decisions by local classifiers, we for-
malize the problem of Distributed Plurality Voting (DPV)
in dynamic P2P networks. Specifically, we propose a general
form of DPV protocol which keeps the single-site validity [3]
for dynamic networks, and supports the computing modes
of both one-shot query and continuous monitoring. Fur-
thermore, we theoretically prove that the condition C0 for
sending messages used in DPV0 is locally communication-
optimal to achieve the above properties. While C0 used in
DPV0 is only locally (not globally) communication-optimal,
the experimental results show that DPV0 is significantly
more communication-efficient than existing algorithms for
distributed plurality voting. Thus, this ensemble paradigm
is communication-efficient in P2P networks, since neighbor-
to-neighbor communication is mainly concerned in combin-
ing local outputs by DPV without any model propagations.

Finally, we have shown that our DPV algorithm can be
extended to solve the problem of Restrictive Distributed
Plurality Voting (RDPV) in dynamic P2P networks. This
problem requires that the proportion of the maximally voted
option to all the votes be above a user-specified threshold.
RDPV can be used in a classification ensemble in a restric-
tive manner, i.e. by leaving out some uncertain instances.

2. RELATED WORK
Related literature can be grouped into two categories: en-

semble classifiers and P2P data mining.
Ensemble classifiers. The main idea is to learn an en-

semble of classifiers from subsets of data, and combine pre-
dictions from all these classifiers in order to achieve high
classification accuracies. There are various methods for com-
bining the results from different classifiers, such as voting
and meta-learning [7]. In (weighted) voting, a final deci-
sion is made by a plurality of (weighted) votes. Effective
voting [23] is also proposed to vote the most significant clas-
sifiers selected by statistical tests. Lin et al. [17] theoret-
ically analyzed the rationale behind plurality voting, and
Demrekler et al. [12] investigated how to select an opti-
mal set of classifiers. In addition, meta-learning is used to
learn a combining method based on the meta-level attributes
obtained from predictions of base classifiers. The meta-
learning method includes arbiter [7], combiner [7], multi-
response model trees [11] using an extended set of meta-level
features, meta decision trees [22] and so on.

Ensemble classifiers have been used for classification in
both centralized and distributed data as follows. For cen-
tralized massive data, base-level classifiers are generated by
applying different learning algorithms with heterogeneous
models [19, 23], or a single learning algorithm to different
versions of the given data. For manipulating the data set,
three methods can be used: random sampling with replace-
ment in bagging [5], re-weighting of the mis-classified train-
ing examples in boosting [15], and generating small bites of
the data by importance sampling based on the quality of
classifiers built so far [6].

For naturally distributed data, several techniques have
been proposed as follows. Lazarevic et al. [16] give a dis-
tributed version of boosting algorithm, which efficiently in-
tegrates local classifiers learned over distributed homoge-
neous databases. Tsoumakas et al. [24] present a framework

for constructing a global predictive model by stacking local
classifiers propagated among distributed sites. Chawla et
al. [8] present a distributed approach to pasting small bites,
which uniformly votes hundreds or thousands of classifiers
built on all distributed data sites. Chawla’s algorithm is
fast, accurate and scalable, and illuminates the classifica-
tion framework proposed in the following section.

P2P data mining. With the rapid growth of P2P net-
works, P2P data mining is emerging as a very important
research topic in distributed data mining. Approaches to
P2P data mining have focused on developing some primi-
tive operations as well as more complicated data mining al-
gorithms [9]. Researchers have developed some algorithms
for primitive aggregates, such as average [20, 18], count [3],
sum [3], max, min, Distributed Majority Vote (DMV) [27]
and so on. The aggregate count, sum and DMV are in-
herently duplicate sensitive, which requires that the value
on each peer be computed only once. To clear this hurdle
Paper [3] processes count and sum by probabilistic count-
ing [14] in an approximate manner, while the DMV algo-
rithm in [27] performs on a spanning tree over the P2P
network. A main goal of these studies is to lay a founda-
tion for more sophisticated DM algorithms in P2P systems.
Pioneer works for P2P DM algorithms include P2P associ-
ation rule mining [27], P2P K-means clustering [10], P2P
L2 threshold monitor [26] and outlier detection in wireless
sensor networks [4]. They all compute their results in a
totally decentralized manner, using information from their
immediate neighbors. A recent paper [21] presents a clas-
sification framework for automatic document organization
in a P2P environment. However, this approach propagates
local models between neighboring peers, which heavily bur-
dens the communication overhead. It only focuses on the
accuracy issue, and does not involve any dynamism of P2P
networks. The experiments of this method were performed
only with up to 16 peers. Thus, it is just a minor extension
of small-scale distributed classification.

To the best of our knowledge, the most similar work to our
DPV problem is the work on DMV [27]. To illustrate the dif-
ference, let us consider the case that a group of peers would
agree on one of d options. Each peer u conveys its preference
by initializing a voting vector P⊥u ∈ Nd (where N is the set
of integers), and P u[i] is the number of votes on the i-th op-
tion. DPV is to decide which option has the largest support
over all peers, while DMV is to check whether the voting
proportion of a specified option to all the votes is above a
given threshold. Thus, DPV is a multi-valued function while
DMV is a binary predicate. In addition, the advantage of
DPV over DMV will be further illustrated in Section 4.

3. BUILDING LOCAL CLASSIFIERS
In this section, we introduce the method for building local

classifiers on the local data in P2P networks. Specifically,
the approach we are exploring is built on top of the pasting
bites method, which is also known as Ivote [6]. In the Ivote
method, multiple local classifiers are built on small train-
ing sets (bites) of a specific local data and the bite for each
subsequent classifier relies on the plurality voting of the clas-
sifiers built so far. In other words, bites are generated from
a specific local data by sampling with replacement based on
the out-of-bag error. Also, a local classifier is only tested on
the instances not belonging to its training set. This out-of-
bag error estimation provides a good approximation on the

Algorithm 1 A Pasting Bites Approach for Building Local
Classifier
Input: the size of each bite, N ; the minimal difference of

error rates between two successive classifiers, λ; the base
training algorithm, ℵ.

Output: multiple local classifiers
1: if the size of local data on the peer is less than N then
2: Learn a classifier on the whole data by ℵ
3: else
4: Build the first bite of size N by sampling with re-

placement from its local data, and learn a classifier
by ℵ

5: Compute the smoothed error, e(k); and the probabil-
ity of selecting a correctly classified instance, c(k) (k
is the number of classifiers in the ensemble so far), as
follows:
r(k) := the out-of-bag error rate of the k aggregated
classifiers on the local data.
e(k) := p×e(k−1)+(1−p)× r(k) (p := 0.75, e(0) :=
r(1)).
c(k) := e(k)/(1− e(k)).

6: For the subsequent bite, an instance is drawn at ran-
dom from the local data. If this instance is misclas-
sified by a plurality vote of the out-of-bag classifiers
(those classifiers for which this instance was not in
their training set), then it is put in the subsequent
bite. Otherwise, put this instance in the bite with the
probability of c(k). Repeat until N instances have
been selected for the bite.

7: Learn the (k + 1)-th classifier on the bite created by
step 6.

8: Repeat steps 5 to 7, until |e(k)− e(k − 1)| < λ
9: end if

generalization error, and is used as the stop condition for
the training process. Indeed, Ivote is very similar to boost-
ing, but the sizes of “bites” are much smaller than that of
the original data set.

The key of the pasting bites method is to compute the
out-of-bag error rate r(k) of the k current aggregated clas-
sifiers on the local data. To compute r(k), we add two data

structures Λ and ~V on each instance of the local data. Λ
records the index of the last classifier, whose training set
includes this instance. ~V records the vote values of the in-
stance on each class label by the out-of-bag classifiers so far.
The details of this algorithm are shown in Algorithm 1. In
k-th round of Steps 5 through 7, for each instance ~V is up-
dated by the last built classifier only when Λ 6= k−1. Then,
by plurality voting, r(k) can be computed easily from the
~V s on all the instances. The stop criteria in Step 8 satis-
fies if the difference of error rates between two successively
generated classifiers is below λ.

Although the local classifier is only trained on a small
portion of the raw data, there is still a large communication
burden for model propagations when thousand or even more
local classifiers participate into the classification process. In
addition, local models are frequently updated caused by fre-
quent updates of distributed data. Therefore, for distributed
classification as described in the next section, each peer is
responsible for maintaining its own local classifiers, which
are never propagated in the rest of the network.

4. A DISTRIBUTED PLURALITY VOTING
PROTOCOL FOR CLASSIFICATION IN
P2P NETWORKS

In this section, we present a Distributed Plurality Voting
(DPV) protocol for classification in P2P networks. Specif-
ically, every peer will participate in the distributed voting.
The final prediction is made by the local votes from all the
local classifiers. The distributed plurality voting protocol is
used to make sure that the results from all nodes that are
reachable from one another will converge.

4.1 Problem Definition
We first give the problem definition. Following the nota-

tions in [27], we assume that a group U of peers in a P2P
network, denoted by a connected graph G(U, E), would like
to agree on one of d options. Each peer u ∈ U conveys its
preference by initializing a voting vector P⊥u ∈ Nd, where
N is the set of integers and P⊥u[i] is the number of votes
on the i-th option. DPV is to decide which option has the
largest number of votes over all peers (it may contain mul-
tiple maximally voted options), formalized as follows:

arg max
i

X
u∈U

P⊥u[i].

For distributed majority voting (DMV) [27], each peer u ∈ U
initializes a 2-tuple 〈sum⊥u, count⊥u〉, where sum⊥u stands
for the number of the votes for a certain option on peer u
and count⊥u stands for the number of the total vote on
peer u. This majority voting is to check whether the voting
proportion of the specified option is above a given majority
ratio η. This is formalized as follows:

sgn
X
u∈U

(sum⊥u − η · count⊥u).

From the above, we know that DPV is a multi-valued func-
tion while DMV is a binary predicate. Also, we can see
that DMV can be converted to DPV by replacing the 2-
tuple 〈sum⊥u, count⊥u〉 on each peer with the voting vec-
tor 〈sum⊥u, η · count⊥u〉. However, DMV can only be used
for 2-option DPV as a pairwise comparison. For a d-option
DPV problem, pairwise comparisons among all the d options

must be performed by DMV for d·(d−1)
2

times, as suggested
by Multiple Choice Voting [27], whose function is actually to
rank the d options by their votes (in the rest of this paper,
we refer this algorithm as RANK). The proposed DPV
algorithm in this paper do not need to perform pairwise
comparisons many times. Instead, it finds the maximally
supported option directly, and thus saves a lot of commu-
nication overhead and the time for convergence. Therefore,
DPV is a more general form of DMV.

Algorithm 2 C0(P
vu, P uv, ∆uv)

1: for all iuv such that iuv ∈~iuv do
2: for all j := 1, · · · , d such that j 6= iuv do
3: if (∆uv[iuv]−∆uv[j]) < (P uv[iuv]− P uv[j]) then
4: return true
5: end if
6: end for
7: end for
8: return false

Algorithm 3 DPV Protocol

Input for node u: The set Eu of edges that collide with
it, the local voting vector P⊥u. C is the condition for
sending messages.

Output: The algorithm can be used for both one-shot
query and continuous monitoring. It outputs ~iu :=
arg maxi

P
vu∈Nu P vu[i] at each time point.

Definitions: See notation in Table 1.

Initialization: For each vu ∈ Eu, set P vu to null, and
send P⊥u over uv to v.

On failure of edge vu ∈ Eu: Remove vu from Eu.

On recovery of edge vu ∈ Eu: Add vu to Eu, and send
P⊥u over uv to v.

On message P received over edge vu: Set P vu to P .

On any change in ∆uv (uv ∈ Eu), resulting from a
change in the input, edge failure or recovery, or
the receiving of a message:
for each vu ∈ Eu do

if C(P vu, P uv, ∆uv) =true then
send ∆uv :=

P
wu6=vu∈Nu P wu over uv to v

end if
end for

4.2 The DPV Protocol
The purpose of DPV is to make sure that every node in

the network converges toward the correct plurality through
neighbor-to-neighbor communication. The DPV protocol
includes a mechanism to maintain an un-directional span-
ning tree [28] for the dynamic P2P network, and a node is
informed of changes in the status of adjacent nodes.

Because there is only one path between two nodes in a
tree, the voting vector on each peer is only added once
through the edges in the tree. This ensures that the DPV
protocol is duplicate insensitive.

Table 1: Some Notations for DPV
Symbol Meaning

P uv the last voting vector sent from u to v
P vu the last voting vector sent from v to u
Eu {vu: v and u are neighbors}
⊥u the virtual edge from u to itself
Nu Eu ∪ {⊥u}
P⊥u the voting vector of node u

The DPV protocol specifies how nodes react when the
data changes, a message is received, or a neighboring node
is reported to have detached or joined. The nodes commu-
nicate by sending messages that contain the voting vector.
Each node u will record, for every neighbor v, the last mes-
sage it sent to v, P uv, and the last message it received from
v, P vu. For conciseness, we extend the group of edges collid-
ing with u, denoted by Eu, to include the virtual edge ⊥u,
and the extended edge set is denoted by Nu. These related
notions are listed in Table 1. Node u calculates the following

functions of its messages and its own voting vector:

∆uv :=
X

wu6=vu∈Nu

P wu, ∆u := ∆uv + P vu,

Γuv := P uv + P vu, ~iuv := arg max
i

Γuv[i],

~iu := arg max
i

∆u[i].

When the local voting vector changes, a message is received,
or a node connects to u or disconnects from u, The above
functions, including ∆uv, Γuv, ~iuv and ~iu, will be recalcu-
lated. ∆uv is the message when the protocol asks u to send
to v when necessary. Γuv and~iuv are the voting vectors and
the corresponding set of all maximally voted option(s) on v
from the view point of u, respectively. Note that if no mes-
sage is yet received from any neighbor, then ~iu converges
to the right result, the option(s) with the largest number of
votes over all the peers.

The enforcement of the voting proposal on each node is
independent from that of the immediate neighbors of this
node. Node u coordinates its plurality decision with node v
by making sure that P uv will not lead v to a wrong result.
When ∆uv changes, the protocol dictates that u send v a
message, ∆uv, if a certain condition C0 satisfies. This condi-
tion is actually a boolean function of three inputs P vu, P uv

and ∆uv. In the following, we detail this condition, which
is the key of the DPV protocol.

4.2.1 The condition for sending messages C0

Algorithm 2 shows the pseudo-code of C0 for sending mes-
sages. The inequality in Algorithm 2 says that if ∆uv can
result in a decrease of the voting difference between the max-
imally voted option iuv and any other option j, ∆uv must be
sent. Actually, C0 is the more generic and extended form of
the condition in DMV [27] for generic d-option DPV prob-
lems. These two conditions are equivalent only when solving
2-option voting problems. Therefore, DPV and DMV are
actually equivalent for 2-option voting problems. However,
DMV cannot solve d-option DPV problems (d > 2) directly.
In addition, C0 saves much communication overhead for d-
option DPV problems (d > 2), because it avoids multiple
pairwise comparisons in RANK.

4.2.2 Descriptions of the DPV Protocol
Algorithm 3 shows the pseudo-code of the general form of

the DPV protocol with a condition C as an input. DPV0 is
an instance of this algorithm, in which C0 is used.

To transparently deal with the frequent changes of the net-
work topology and the inputs of voting vectors, this DPV
protocol is designed in a way such that every peer regards
itself as the root of the spanning tree. During the execution
of this algorithm, each node maintains an ad-hoc solution.
If the system remains static long enough, this solution will
quickly converge to the exact (not approximate) answer. For
the dynamic system, where nodes dynamically join or depart
and the votes on each peer change over time, the ad-hoc so-
lutions are adjusted quickly and locally to the current right
answer. Therefore, this DPV protocol keeps the single-site
validity, and supports the computing modes of both one-shot
query and continuous monitoring for distributed plurality
voting in P2P networks. Additionally, in Section 5, our ex-
perimental results also show that this protocol demonstrates

a local effect: in the most of cases, each node computes the
plurality voting based on information arriving from a very
small surrounding environment. Locality implies that this
algorithm should be scalable to very large networks.

It can be proved that DPV0 keeps the correctness of dis-
tributed plurality voting. When this protocol specifies that
no node needs to send any message,~iu converges to the right
result for all nodes. If there is a disagreement, there must be
a disagreement between two immediate neighbors, in which
case at least one node satisfies the inequality and sends a
message. This will cause the total number of votes received
to increase. This total number is bounded by the number of
classifiers in the system. Hence, this protocol always reaches
the right consensus in a static state. The details of this proof
are presented in the Appendix.

Figure 1: The error case

Algorithm 4 Ce(P
vu, P uv, ∆uv), 0 ≤ e ≤ 1

1: if C0(P
vu, P uv, ∆uv)=true then

2: return true
3: end if
4: e

′
:=a random value in [0, 1)

5: if e
′
< e then

6: return true
7: else
8: return false
9: end if

4.3 The Local Optimality in terms of Commu-
nication Overhead

In the following, we provide a formal description of the
local communication optimality for the DPV0 protocol, and
then theoretically prove it. It is shown that C0 is the most
restrictive condition for sending messages to support the
computing modes of both one-shot query and continuous
monitoring for distributed plurality voting in P2P networks.

Definition 1. Condition C1 is more restrictive than con-
dition C2 denoted by C1 º C2, if and only if, for any input
case if C1 satisfies then C2 satisfies.

Definition 2. Condition C1 is strictly more restrictive
than condition C2 denoted by C1 Â C2, if and only if, C1 is
more restrictive than C2 and there at least exists an input
case such that C2 satisfies and C1 does not.

Theorem 1. For the problem of distributed plurality vot-
ing there does not exist a condition C which is strictly more
restrictive than C0, such that the Algorithm 3 with C as the
condition for sending messages still reaches the right answer
for every input case.

Proof. We first assume that such a condition C exists,
then construct the cases for which it reaches a wrong result.
Without loss of generality, the following analysis is under
the assumption of a 2-option DPV problem.

Because C Â C0, at least the following case Π exists: u
and v are two immediate neighbors, C0(P

uv, P vu, ∆uv) is
true, C(P uv, P vu, ∆uv) is false. We assume that P uv =

(u[1], u[2]), P vu = (v[1], v[2]), ∆uv = (u[1]
′
, u[2]

′
), u[1] +

v[1] > u[2] + v[2]. Since C0(P
uv, P vu, ∆uv) is true, (u[1]

′
+

v[1])− (u[2]
′
+ v[2]) < (u[1] + v[1])− (u[2] + v[2]). Then we

construct the error case in Figure 1, in which v is surrounded
by k nodes of u1, · · · , uk where

k = d (u[1] + v[1])− (u[2] + v[2])

((u[1] + v[1])− (u[2] + v[2]))− ((u[1]′ + v[1])− (u[2]′ + v[2]))
e.

In this figure the vector on the double-arrowhead side is
the corresponding vector P which has been sent, the vector
on the double-arrowtail side is the corresponding vector ∆
which will be sent if the condition satisfies.

Initially, P⊥v is set as a vector (x, y) such that

x + k · u[1] < y + k · u[2],

and P⊥ui is set as (u[1], u[2]) for i = 1, · · · , k. Under this
initial setting, all the peers converge to the state that the
second vote is the maximally voted option.

After this convergence, P⊥v changes to (v[1] − (k − 1) ·
u[1], v[2] − (k − 1) · u[2]). Because u[1] + v[1] > u[2] +
v[2], v changes to the state that the first vote is the maxi-
mally voted option. Then, it sends (v[1], v[2]) to ui for i =
1, · · · , k. Thus, ∆vui changes to (v[1], v[2]) for i = 1, · · · , k.

At this time, ∆uiv on each node ui (i = 1, · · · , k) changes

to (u[1]
′
, u[2]

′
). Because C(P uv, P vu, ∆uv) is false, (u[1]

′
, u[2]

′
)

is not sent from ui to v. Thus, v remains to the state that
the first vote is the maximally voted option. However, the
right state for the whole network is the second one, because
by the initial setting the following inequality holds:

v[2]− (k− 1) ·u[2] + k ·u[2]
′ ≥ v[1]− (k− 1) ·u[1] + k ·u[1]

′
.

It generates an error case, and follows the conclusion.

The above proof of Theorem 1 shows that to keep the cor-
rectness of Algrithm 3, ∆uv must be sent from u to v for any
case, which satisfies the following conditions: u and v are
two immediate neighbors, C0(P

uv, P vu, ∆uv) is true; other-
wise, it will result in the error case in Figure 1. Therefore,
the conditions in Algorithm 4 for 0 ≤ e ≤ 1 includes all the
conditions for sending messages, which keep the correctness
of Algrithm 3. In this family of conditions, C0 is the most
restrictive one. We should mention that C0 is a local opti-
mal condition, not a global one. This indicates that, for a
certain input case, the total communication overhead used
in Ce (0 < e ≤ 1) may be smaller than that used in C0.
However, the careful experiments conducted in the follow-
ing will show that the case mentioned above is very rare,
and C0 is significantly more communication-efficient than Ce

(0 < e ≤ 1).

4.4 Extensions of Distributed Plurality Voting
Here, we show that our DPV protocol can be extended to

solve the problem of Restrictive Distributed Plurality Vot-
ing (RDPV) in dynamic P2P networks, which outputs the
maximally voted option whose proportion to all the votes
is above a user-specified threshold η. Using the notation in
Section 4.1 this output is formalized as follows:

k ∈ arg max
i

X
u∈U

P⊥u[i] ∧
X
u∈U

P⊥u[k] ≥ η ·
X

i

X
u∈U

P⊥u[i].

This can be used in P2P classification in a restrictive man-
ner. In this manner the classification decision can only be
made when the proportion of the maximally supported op-
tion to all the votes is not below the threshold η, and the
uncertain instance is discarded.

This problem can be solved by Algorithm 3 with the fol-
lowing modifications: (1) the threshold η is added to the
inputs of this algorithm; (2) the condition M for sending
messages in Algorithm 5 is used; (3) the output changes to

i
u ∈ arg max

i

X

vu∈Nu

P
vu

[i] ∧
X

vu∈Nu

P
vu

[i
u
] ≥ η ·

X

i

X

vu∈Nu

P
vu

[i].

The lines through 7 to 12 in Algorithm 5 are responsible for
the additional check of the additional constrain for RDPV.
And this check is only applied to the current maximally
voted option iuv. The correctness of M is directly based on
the correctness of C0, and thus the proof is omitted.

Algorithm 5 M(P vu, P uv, ∆uv, η)

1: for all iuv such that iuv ∈~iuv do
2: for all j := 1, · · · , d such that j 6= iuv do
3: if (∆uv[iuv]−∆uv[j]) < (P uv[iuv]− P uv[j]) then
4: return true
5: end if
6: end for
7: Qvu := (P vu[iuv], η ·Pi P vu[i])
8: Quv := (P uv[iuv], η ·Pi P uv[i])
9: Φuv := (∆uv[iuv], η ·Pi ∆uv[i])

10: if C0(Q
vu, Quv, Φuv) = true then

11: return true
12: end if
13: end for
14: return false

5. EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation of

our approach for P2P classification. Specifically, we demon-
strate: (1) the performance of P2P classification in terms of
accuracy, (2) the performance comparison of our DPV algo-
rithms and RANK [27] in terms of communication overhead
and the converge time. Three types of networks, including
power-law graph [2], random graph [25] and grid, are used
in our experiments. The power-law and random graphs are
generated by BRITE1 with the default parameters. For the
n-node grid, the n1 × n2 grid is generated where n1 is the
the largest common divisor of n and n1 × n2 = n.

1http://www.cs.bu.edu/brite/

5.1 The Performance of P2P Classification
Due to the lack of labeled P2P data, we used the covtype

(581012 × 54, 7 classes) data set, which is the largest data
set in the UCI repository2. We first randomly divided this
data set into hundreds of disjoint partitions in a way such
that the size of each partition is not too small. Then, each
partition was assigned to a peer in the P2P network. The
P2P network used in this experiment is a power-law graph
with 500 nodes. For this distributed classification, the data
size si of peer i is set to be proportional to its number of
immediate neighbors ki, so that si = s · kiP

i ki
where s is

the size of the original dataset. The rationale behind this
is that if ki of peer i is big, it indicates that peer i stays
in this network for a long time, and thus accumulate more
data. Also, we make the following initial settings to Algo-
rithm 1: N = 800, λ = 0.002. Finally, the J48 (a variant of
C4.5) from the Weka Package3 is used as the base training
algorithm and a 10-fold cross validation is performed.

Table 2: Classification Accuracy
Algorithm Type Accuracy(%) Loss(%)

centralized learning 80.0885 0
η = 0 74.7685 0

η = 0.4 74.9171 0.3614
distributed learning η = 0.5 76.1324 4.3957

η = 0.55 79.1231 14.5004
η = 0.6 82.2541 24.4381

First, we compare the performance of the P2P classifica-
tion and classification on the centralized data. The classi-
fication algorithm for the centralized data is the same with
the local training algorithm on each peer. Next, we also
evaluate the performance of this P2P classification by re-
strictive plurality voting, where the instance is discarded if
the proportion of the maximally supported option to all the
votes is below a threshold η. By changing the η values, we
study the relationship between the accuracy (the fraction
of the correctly classified instances) and the loss (the frac-
tion of the discarded instances). The results of these two
experiments are shown in Table 2.

As can be seen in Table 2, the accuracy of distributed
learning is pretty close to that of centralized learning. In-
deed, the difference is less than 6% for the most cases. This
difference is mainly due to the fact that some classification
patterns may only exist in the centralized data. In addition,
Table 2 also demonstrates that the accuracy is increased as
the increase of η values. However, this improvement is at
the cost of the increase of data loss. Thus, there is a tradeoff
between accuracy and loss.

5.2 A Performance Evaluation of Distributed
Plurality Voting

To evaluate the performance of our DPV algorithms, we
have implemented a discrete event simulator which has the
capabilities in processing networks with different sizes and
types. For each time unit (1 ms), this simulator checks each
peer to see whether the condition for sending messages satis-
fies. It is assumed that each peer can only process one mes-
sage in a time unit, and the delays on the immediate links
are uniformly distributed between 40 ms and 1000 ms. Since

2http://www.ics.uci.edu/∼mlearn/MLRepository.html
3http://www.cs.waikato.ac.nz/ml/weka

Table 3: Average Metrics for the Power-law Graph
Algorithm Avg. Value of ān Avg. Rank of ān Avg. Value of tn (sec) Avg. Rank of tn

DPV0 4.3421 1.0025 3.6039 1.0
RANK 15.5486 1.9975 49.3847 2.0

Table 4: Average Metrics for the Random Graph
Algorithm Avg. Value of ān Avg. Rank of ān Avg. Value of tn (sec) Avg. Rank of tn

DPV0 4.2624 1.0 4.4279 1.0
RANK 15.7363 2.0 57.4102 2.0

the algorithms for one-shot query and continuous monitor-
ing are performed in the same manner, we only measure the
one-shot query in this experiment. For the one-shot query of
plurality voting, a network topology and the voting vectors
on all peers are firstly initialized and will not change during
protocol execution.

We use two performance metrics: communication over-
head and convergence time. In the experiment, we record
the following two time points for an one-shot query: tc (the
time of convergence), which is the time when each peer
reaches a right and stable result (sometimes all peers may
reach the right results, however, the result on certain peer
may not be stable); tn, which is the time when no message
is propagated in the network. tc is always before tn. In
addition, we define the communication overhead of peer u
as the volume of the messages it has sent. This overhead
is equal to the number of received messages times the num-
ber of entries in each message4. The locality of a protocol
is measured mainly according to the average communica-
tion overhead of all the nodes, denoted by ā. The two time
points tc and tn corresponds to two average communication
overheads: āc and ān. āc is the ā consumed before tc and
ān is the ā consumed before tn.

In the following experiments, we evaluate the performance
of DPV from three aspects. First, we present a performance
comparison of DPV0 and RANK algorithms. Next, we show
the scalability of DPV0. Finally, we illustrate the local op-
timality of DPV0.

5.2.1 DPV0 vs. RANK

For both DPV0 and RANK5, the average metrics over
2000 instances of 7-option plurality voting over 500-node
networks are computed. In the following experimental data,
the unit of communication overhead is the volume of each
message consumed by this 7-option distributed plurality vot-
ing. Thus, each message consumed by RANK has 2

7
units.

We use a statistical method [13] in comparing these algo-
rithms. This statistical method allows to give a rank to both
algorithms for each instance; that is, a rank 1 is assigned to
a winning algorithm and a rank 2 is assigned to the losing
one. If there is a tie, the average value 1.5 is assigned to
both algorithms. Let rj

i be the rank of the j-th algorithm
on the i-th of N instances, this method compares the aver-

4Note that each message communicated by DPV contains
d entries; however, every message communicated by RANK
contains only 2 entries. This has been considered when com-
paring the communication overheads of two algorithms.
5For RANK, we assume that the d×(d−1)

2
pairwise compar-

isons are performed one after another; thus, the metric con-

sumed by RANK is the sum of the metrics of the d×(d−1)
2

pairwise comparisons.

age ranks of algorithms, Rj = 1
N

PN
i=1 rj

i , by the Friedman
test [13].

Tables 3, 4, and 5 show the comparison results on three
network topologies: power-law graph, random graph and
grid. As can be seen in these tables, DPV0 significantly
outperforms RANK in terms of both ān and tn.

Our experimental results also indicate that the locality
of DPV relates to the parameter r of the input votes: r =P

u P⊥u[a]−Pu P⊥u[b], where a and b have the largest and
the second largest number of votes. Figures 2 (a), (b), and
(c) show the values of the ān for DPV0 at different r val-
ues, for three network topologies: power-law graph, random
graph and grid, respectively. In these figures, we can see
that ān decreases as the increase of r. In addition, these fig-
ures show that in most cases (r > 300) ān is always smaller
than 5. This indicates that DPV0 has a local effect in the
sense that voting is processed using information gathered
from a very small vicinity.

Finally, we observe that the average rank values of ān for
DPV0 in Tables 3 and 5 are a little greater than 1. This
indicates that there exists such a rare input case, where the
ān for RANK is smaller than that for DPV0. We also find
that for both DPV0 and RANK the performance in terms
of both ān and tn for the grid is worse than that for the
power-law and random graph. A possible reason for this
finding is that the clustering coefficient [25] of the grid is
much smaller than that of the power-law graph and random
graph.

5.2.2 The Scalability of DPV0

In this experiment, we use the synthetic data to study
the scalability of DPV0. Specifically, we develop synthetic
data models to simulate different problem environments for
distributed plurality voting by changing model parameters.
In general, there are two design issues for the generation of
synthetic data models: the voting vector on each peer and
the network topology.

We propose Algorithm 6 for voting vector modeling. Algo-
rithm 6 has 3 parameters: n (the number of peers), cov (de-
scribing the degree of difficulty for the voting vectors), and
~P (the basic data vector). We first introduce this method,
and then describe the meaning of the model parameters.

The function generateDistribution(cov) generates a distri-

bution vector ~D by the gamma distribution [1], such that
the bigger the value of cov is, the more different the values of
all the entries (~D[i] > 0 for i = 1, · · · , d) in ~D are. Then, the

function generateOneVoteVector(~D, ~P) randomly generates

a voting vector ~P
′
, such that the bigger the value of ~D[i]

is, the more possible that ~P
′
[i] is set by a bigger entry of

~P , and each entry of ~P is used only once (the pseudo-codes

Table 5: Average Metrics for the Grid
Algorithm Avg. Value of ān Avg. Rank of ān Avg. Value of tn (sec) Avg. Rank of tn

DPV0 4.9099 1.0215 17.1628 1.0
RANK 16.3738 1.9785 173.2258 2.0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 200 400 600 800 1000 1200

av
er

ag
e

co
m

m
un

ic
at

io
n

ov
er

he
ad

r

DPV0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 200 400 600 800 1000 1200
av

er
ag

e
co

m
m

un
ic

at
io

n
ov

er
he

ad

r

DPV0

 0

 5

 10

 15

 20

 25

 30

 35

 0 200 400 600 800 1000 1200

av
er

ag
e

co
m

m
un

ic
at

io
n

ov
er

he
ad

r

DPV0

(a) The power-law graph (b) The random graph (c) The grid

Figure 2: The ān of DPV0 at different r values.

Algorithm 6 The Voting Vector Modeling

Input: n, cov, ~P .
Output: En×d, where E[i, j] is the j-th vote value on the

i-th peer and d = |~P |.
~D :=generateDistribution(cov)
for all i := 1, · · · , n do

E[i] :=generateOneVoteVector(~D, ~P)
end for
return E

for these two functions are omitted). Hence, the bigger the

value of cov is, the more possible that the entry ~P
′
[i] with

a much bigger distribution value ~D[i] is set by the much

bigger entry of ~P . As a result, the more possible that the
magnitude sequences of the voting vector entries on each
peer are the same; and thus, the smaller the degree of diffi-
culty for the voting vectors is. This is the reason why cov is
used to describe the degree of difficulty for the input vectors.
All the parameters and their values used in the second part
experiment are listed in Table 6.

Table 6: The Experimental Parameters
Parameter Name Values

The graph type power-law graph, random graph, grid
The number of nodes {500, 1000, 2000, 4000, 8000, 16000}

cov {0.1, 0.2, 0.4, 0.8, 1.6, 3.2}
The main goal of this experiment is to show that the per-

formance of ān for the DPV0 algorithm is independent of the
network size. These experiments are performed under the
assumption that the degree of difficulty for the whole prob-
lem remains unchanged with the increase of the network size.
The vote modeling method in Algorithm 6 provides a great
control over the degree of difficulty for the voting vectors;
however, the networks with different topologies generated by
BRITE may change the degree of difficulty for the problems
with the increase of the network sizes, and it is hard to con-
trol the factor of network topology. Due to this reason, not

every experimental case supports the conclusion that the ān

of the DPV0 algorithm is independent of the size of the net-
work. However, we did observe some experimental cases as
shown in Figure 3. Additionally, the results on the synthetic
data also show that DPV0 significantly outperforms RANK
in terms of both ān and tn.

10
3

10
4

0

2

4

6

8

10

12

14

number of nodes

av
er

ag
e

co
m

m
un

ic
at

io
n

ov
er

he
ad

power−law graph, cov=0.4
power−law graph, cov=1.6
power−law graph, cov=3.2
random graph, cov=0.8
grid, cov=1.6

Figure 3: The ān of DPV0 with respect to networks
with different sizes.

Table 7: ān for the Power-law Graph
Algorithm Avg. Value of ān Avg. Rank of ān

DPV0 4.3421 1.002
DPV0.05 6.1273 2.003
DPV0.1 8.1940 3.0001
DPV0.15 10.7379 3.9993
DPV0.2 13.6547 4.9953

5.2.3 The Local Optimality of DPV0

Finally, in this experiment, we investigate the local opti-
mality of DPV0 by comparing it with other protocols DPVe

(e = 0.05, 0.1, 0.15, 0.2, DPVe is the DPV protocol with
the Ce as its condition for sending messages). Tables 7

Table 8: āc for the Power-law Graph
Algorithm Avg. Value of āc Avg. Rank of āc

DPV0 4.3289 1.002
DPV0.05 6.0634 2.004
DPV0.1 7.8860 3.0025
DPV0.15 9.9063 4.001
DPV0.2 12.0611 4.991

Table 9: tn for the Power-law Graph
Algorithm Avg. Value of tn (sec) Avg. Rank of tn

DPV0 3.6039 1.5455
DPV0.05 4.4269 2.0488
DPV0.1 5.5558 2.9698
DPV0.15 6.67356 3.929
DPV0.2 7.6662 4.507

through 10 record these comparison results for the power-
law graph. Tables 7 and 8 show that DPV0 is significantly
more communication-efficient than the other protocols in
terms of both ān and āc, and the increase of e results in the
increase of communication overhead. Table 9 shows that tn

increases as the increase of e, while Table 10 shows that tc

decreases as the increase of e. The above results demon-
strate that:

• The increase of the value e leads to the increase of both
āc and ān values.

• The communication overhead consumed before tc is
useful, because the increase of āc leads to the decrease
of tc. There is a tradeoff between āc and tc.

• The communication overhead consumed from tc to tn

is not very useful, because tn still increases along the
increase of e. However, the communication overhead
consumed in this phase is indispensable because each
peer cannot perceive its stable state.

• We did observe the case in which DPV0.05 is more
communication-efficient than DPV0 in terms of both
āc and ān. This may indicate that C0 is a local opti-
mal condition. However, such cases are very rare as
shown by the average ranks of the the corresponding
algorithms.

In general, although C0 is local optimal, DPV0 is the most
communication-efficient protocol in most cases. For some
practical needs, we can select a bigger value of e to decrease
tc (the convergence time) at the cost of the increase of com-
munication overhead.

6. CONCLUSIONS
In this paper, we proposed an ensemble paradigm for dis-

tributed classification in P2P networks. Specifically, we for-
malized a generalized Distributed Plurality Voting (DPV)
protocol for P2P networks. The proposed protocol DPV0

imposes little communication overhead, keeps the single-site
validity for dynamic networks, and supports the comput-
ing modes of both one-shot query and continuous monitor-
ing. Furthermore, we theoretically prove the local optimal-
ity of the protocol DPV0 in terms of communication over-
head. Finally, the experimental results showed that DPV0

significantly outperforms alternative approaches in terms
of both average communication overhead and convergence

Table 10: tc for the Power-law Graph
Algorithm Avg. Value of tc (sec) Avg. Rank of tc

DPV0 3.0134 4.319
DPV0.05 2.6001 3.4368
DPV0.1 2.3781 2.7778
DPV0.15 2.2725 2.4598
DPV0.2 2.1487 2.0068

time. Also, the locality of DPV0 is independent of the net-
work size. As a result, our algorithm can be scaled up to
large networks.

7. ACKNOWLEDGMENTS
This work is supported by the National Science Foun-

dation of China (No. 60435010, 90604017, 60675010), the
863 Project (No.2006AA01Z128), National Basic Research
Priorities Programme (No. 2003CB317004) and the Nature
Science Foundation of Beijing (No. 4052025). Also, this re-
search was supported in part by a Faculty Research Grant
from Rutgers Business School-Newark and New Brunswick.

8. REFERENCES
[1] S. Ali, H. J. Siegel, M. Maheswaran, S. Ali, and

D. Hensgen. Task execution time modeling for
heterogeneous computing systems. In Proceedings of
the 9th Heterogeneous Computing Workshop, pages
185–200, 2000.

[2] A.-L. Barabsi and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509–512, 1999.

[3] M. Bawa, A. Gionis, H. Garcia-Molina, and
R. Motwani. The price of validity in dynamic
networks. In SIGMOD, pages 515–526, 2004.

[4] J. Branch, B. Szymanski, C. Gionnella, R. Wolff, and
H. Kargupta. In-network outlier detection in wireless
sensor networks. In ICDCS, 2006.

[5] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[6] L. Breiman. Pasting bites together for prediction in
large data sets. Machine Learning, 36(2):85–103, 1999.

[7] P. Chan and S. Stolfo. A comparative evaluation of
voting and meta-learning on partitioned data. In
ICML, pages 90–98, 1995.

[8] N. V. Chawla, L. O. Hall, K. W. Bowyer, and W. P.
Kegelmeyer. Learning ensembles from bites: A
scalable and accurate approach. Journal of Machine
Learning Research, 5:421–451, 2004.

[9] S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and
H. Kargupta. Distributed data mining in peer-to-peer
networks. IEEE Internet Computing special issue on
Distributed Data Mining, 10(4):18–26, 2006.

[10] S. Datta, C. Giannella, and H. Kargupta. K-means
clustering over a large, dynamic network. In SDM,
pages 153–164, 2006.

[11] S. Dz̆eroski and B. Z̆enko. Is combining classifiers
with stacking better than selecting the best one?
Machine Learning, 54(3):255–273, 2004.

[12] M. Demrekler and H. Altincay. Plurality voting-based
multiple classifier systems: statistically independent
with respect to dependent classifier sets. Pattern
Recognition, 35(11):2365–2379, 2002.

[13] J. Demsar. Statistical comparisons of classifiers over
multiple data sets. Journal of Machine learning
research, 7:1–30, 2006.

[14] P. Flajolet and G. N. Martin. Probabilistic counting.
In Proceedings of the 24th Annual Symposium on
Foundations of Computer Science, pages 76–82, 1983.

[15] Y. Freund and R. E. Schapire. Experiments with a
new boosting algorithm. In ICML, pages 148–156,
1996.

[16] A. Lazarevic and Z. Obradovic. The distributed
boosting algorithm. In KDD, pages 311–316, 2001.

[17] X. Lin, S. Yacoub, J. Burns, and S. Simske.
Performance analysis of pattern classifier combination
by plurality voting. Pattern Recognition Letters,
24:1959–1969, 2003.

[18] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low,
and R. M. Murray. Asynchronous distributed
averaging on communication networks. IEEE/ACM
Transactions on Networking, 2007.

[19] C. J. Merz. Using correspondence analysis to combine
classifiers. Machine Learning, 36(1-2):33–58, 1999.

[20] A. Montresor, M. Jelasity, and O. Babaoglu.
Gossip-based aggregation in large dynamic networks.
ACM Transactions on Computer Systems,
23(3):219–252, 2005.

[21] S. Siersdorfer and S. Sizov. Automatic document
organization in a p2p environment. In ECIR, pages
265–276, 2006.

[22] L. Todorovski and S. Dz̆eroski. Combining classifiers
with meta decision trees. Machine Learning,
50(3):223–249, 2003.

[23] G. Tsoumakas, I. Katakis, and I. P. Vlahavas.
Effective voting of heterogeneous classifiers. In ECML,
pages 465–476, 2004.

[24] G. Tsoumakas and I. Vlahavas. Effective stacking of
distributed classifiers. In Proceedings of the 15th
European Conference on Artificial Intelligence, pages
340–344, 2002.

[25] D. Watts and S. Strogatz. Collective dynamics of
‘small-world’ networks. Nature, 393(6684):440–442,
1998.

[26] R. Wolff, K. Bhaduri, and H. Kargupta. Local l2
thresholding based data mining in peer-to-peer
systems. In SDM, pages 430–441, 2006.

[27] R. Wolff and A. Schuster. Association rule mining in
peer-to-peer systems. IEEE Transactions on Systems,
Man and Cybernetics - Part B, 34(6), 2004.

[28] J. Zhao, R. Govindan, and D. Estrin. Computing
aggregates for monitoring wireless sensor networks. In
Proceedings of The First IEEE International
Workshop on Sensor Network Protocols and
Applications, 2003.

APPENDIX
Assume a tree T (U, E) with vote vector P⊥u at each u ∈ U .
Let P uv, ∆uv, Γuv, iuv, iu be as defined in Section 4. For
each uv ∈ E, let [u]v = {w ∈ U : w is reachable from u using
pathes which includes edge uv}. Finally, for any subset of
nodes S ⊆ U , let ∆s =

P
u∈S P⊥u.

Lemma 1. In a static tree T (U, E) with static vote vector
P⊥u at each u ∈ U , when reaching convergence by checking

C0, for any u, v ∈ U , ~iu =~iv.

Proof. In the follow we prove that this conclusion holds
when |~iu| = 1. When |~iu| > 1 the proof is similar.
We prove an equivalent conclusion to this lemma: for any
two immediate neighbors u, v ∈ E, if no messages need to
be sent between u and v, then iu = iv.
If u sends ∆uv to v (at the initial time u sends P⊥u to v),
then ∆u = Γu. At this time we have iu = iuv.
After u sends ∆uv to v, any P wu(w ∈ Nu) may be updated.
Because no messages need be sent to v, this update always
keeps the following inequality for any j = 1, · · · , d:

∆uv[iuv]−∆uv[j] ≥ P uv[iuv]− P uv[j].

Thus,

(∆uv[iuv] + P vu[iuv])− (∆uv[j] + P vu[j]) ≥
(P uv[iuv] + P vu[iuv])− (P uv[j] + P vu[j]),

∆u[iuv]−∆u[j] ≥ Γu[iuv]− Γu[j].

According to the definition of iuv, Γu[iuv]− Γu[j] > 0, then
∆u[iuv]−∆u[j] > 0. Thus, we also have iu = iuv.
With the same method it can be proved that under this
situation iv = ivu. Because iuv = ivu, the conclusion holds
that iu = iv.

Lemma 2. In a static tree T (U, E) with static vote vector
P⊥u at each u ∈ U , when reaching convergence by checking
C0, for any u ∈ U and uv ∈ E, the following inequality holds
for any j = 1, · · · , d, and iu ∈~iu:

∆[u]v [iu]−∆[u]v [j] ≥ P vu[iu]− P vu[j].

Proof. By induction on |[u]v|.
Base: |[u]v| = 1 which means that [u]v = {v}. Hence,
∆[u]v = P⊥v = P vu. Then,

∆[u]v [iu]−∆[u]v [j] = P vu[iu]− P vu[j].

Step: Assume this lemma holds for |[u]v| ≤ k, we will prove
that it holds for |[u]v| = k + 1. For any edge wv ∈ E such
that w 6= u, |[v]w| ≤ k. By the induction hypothesis,

∆[v]w [iv]−∆[v]w [j] ≥ P wv[iv]− P wv[j],

wv∈EX

w 6=u

(∆[v]w [iv]−∆[v]w [j]) ≥
wv∈EX

w 6=u

(P wv[iv]− P wv[j]).

Adding P⊥v[iv]− P⊥v[j] to the both sides of the above in-
equality, then

(

wv∈EX

w 6=u

(∆[v]w [iv]) + P⊥v[iv])− (

wv∈EX

w 6=u

(∆[v]w [j]) + P⊥v[j]) ≥

(

wv∈EX

w 6=u

(P wv[iv]) + P⊥v[iv])− (

wv∈EX

w 6=u

(P wv[j]) + P⊥v[j]),

which means that

∆[u]v [iv]−∆[u]v [j] ≥ ∆vu[iv]−∆vu[j].

Because no messages need to be sent, the following inequal-
ity holds by the condition for sending message C0:

∆vu[iv]−∆vu[j] ≥ P vu[iv]− P vu[j].

According to Lemma 1, upon termination iv = iu. Hence,

∆[u]v [iu]−∆[u]v [j] ≥ P vu[iu]− P vu[j].

Theorem 2. In a static tree T (U, E) with static vote vec-
tor P⊥u at each u ∈ U , when reaching convergence by check-
ing C0, for all u ∈ U , ~iu = arg maxi ∆U [i].

Proof. In the follow we prove that this conclusion holds
when |~iu| = 1. When |~iu| > 1 the proof is similar.

We add a fictitious node f with P⊥f = ~0 to an arbitrary
node u. Note that when u need not send a message to f ,
∆f = P uf = ∆u. Upon convergence, according to Lemma 2
for any j = 1, · · · , d:

∆[f]u [if]−∆[f]u [j] ≥ P uf [if]− P uf [j].

According to Lemma 1, if = iu upon convergence. Thus,
P uf [if] − P uf [j] = ∆u[iu] − ∆u[j] > 0. It is trivial to see
that [f]u = U . Thus, ∆[f]u = ∆U . Then, the following
inequality holds for any j = 1, · · · , d:

∆U [if]−∆U [j] > 0,

which means that if = arg maxi ∆U [i]. Then this conclu-
sion holds.

